Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 6(6): e2315914, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37266943

RESUMO

Importance: Animal models have shown altered dorsal cochlear nucleus circuitry in animals that develop tinnitus; however, precise treatment using bisensory (auditory and somatosensory) stimuli can reverse altered neural patterns and lessen tinnitus. Objective: To confirm and extend the findings of a pilot study, which suggested an increased efficacy of bisensory stimulation, to a clinical trial with a greater duration and greater number of participants. Design, Setting, and Participants: This double-blind, crossover, single-center randomized clinical trial was conducted from March 2019, with a 3-month follow-up per participant ending in July 2022. Eligible adults were recruited from the University of Michigan Health System in Ann Arbor, Michigan. Eligibility criteria included bothersome tinnitus (Tinnitus Functional Index [TFI] score, ≥17 points), somatic tinnitus, normal to moderate hearing loss, and no other tinnitus treatments in the 6 months prior to the trial. Included participants were randomized to either treatment group 1, which received active (bisensory) treatment, or group 2, which received the control (auditory-only) treatment. Results were analyzed using intent-to-treat (ITT) and per protocol (PP) populations. Intervention: Precisely timed bisensory (combined auditory and somatosensory) treatment was delivered through a portable, custom, take-home device that was provided to each participant for daily, at-home treatments. Group 1 participants received 30 minutes per day of the bisensory treatment for 6 weeks, followed by a 6-week washout phase, and then 30 minutes per day of the auditory-only treatment followed by a second 6-week washout phase. Group 2 participants received the auditory-only treatment first, followed by a washout phase, and then the bisensory treatment followed by a second washout phase. Main Outcomes and Measures: Primary end points were changes in TFI score and tinnitus loudness level from baseline through week 6 and week 12. Results: Of 337 screened individuals, 99 (mean [SD] age, 47 [12.7] years; 59 males [60%]; 85 with non-Hispanic White [86%] race and ethnicity) were enrolled into the study and randomized to treatment group 1 (n = 49) or group 2 (n = 50). The active but not the control treatment resulted in clinically significant decreases in TFI scores at week 6 of phase 1 (ITT population: -12.0 [95% CI, -16.9 to -7.9] points; P < .001; PP population: -13.2 [95% CI, -16.0 to -10.5] points; P < .001). Decreases in tinnitus loudness level were greater than 6 dB sensation level (SL; >half as loud) at week 6 for the bisensory treatment group, with little effect for the auditory-only treatment control group at week 6 of phase 1 (ITT population: -5.8 [95% CI, -9.5 to -2.2] dB; P = .08; PP population: -7.2 [95% CI, -11.4 to -3.1] dB; P = .03), and up to 11 dB SL at week 12 of phase 2 (ITT population: -10.9 [95% CI, -15.2 to -6.5] dB; P = .001; PP population: -14.1 [95% CI, -18.4 to -9.8] dB; P < .001). Decreased tinnitus loudness level and TFI scores extended into the washout phase, indicating a prolonged treatment effect. Conclusions and Relevance: This trial found that precisely timed bisensory treatment using stimuli and timing developed in a validated animal model was effective for adults with somatic tinnitus. Prolonged reduction in tinnitus symptoms can result from using an extended treatment duration. Trial Registration: ClinicalTrials.gov Identifier: NCT03621735.


Assuntos
Perda Auditiva , Zumbido , Masculino , Humanos , Zumbido/terapia , Resultado do Tratamento , Projetos Piloto , Encéfalo
2.
Neural Plast ; 2021: 8833087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510780

RESUMO

Accumulating evidence implicates a role for brain structures outside the ascending auditory pathway in tinnitus, the phantom perception of sound. In addition to other factors such as age-dependent hearing loss, high-level sound exposure is a prominent cause of tinnitus. Here, we examined how noise exposure altered the distribution of excitatory and inhibitory synaptic inputs in the guinea pig hippocampus and determined whether these changes were associated with tinnitus. In experiment one, guinea pigs were overexposed to unilateral narrow-band noise (98 dB SPL, 2 h). Two weeks later, the density of excitatory (VGLUT-1/2) and inhibitory (VGAT) synaptic terminals in CA1, CA3, and dentate gyrus hippocampal subregions was assessed by immunohistochemistry. Overall, VGLUT-1 density primarily increased, while VGAT density decreased significantly in many regions. Then, to assess whether the noise-induced alterations were persistent and related to tinnitus, experiment two utilized a noise-exposure paradigm shown to induce tinnitus and assessed tinnitus development which was assessed using gap-prepulse inhibition of the acoustic startle (GPIAS). Twelve weeks after sound overexposure, changes in excitatory synaptic terminal density had largely recovered regardless of tinnitus status, but the recovery of GABAergic terminal density was dramatically different in animals expressing tinnitus relative to animals resistant to tinnitus. In resistant animals, inhibitory synapse density recovered to preexposure levels, but in animals expressing tinnitus, inhibitory synapse density remained chronically diminished. Taken together, our results suggest that noise exposure induces striking changes in the balance of excitatory and inhibitory synaptic inputs throughout the hippocampus and reveal a potential role for rebounding inhibition in the hippocampus as a protective factor leading to tinnitus resilience.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Ruído/efeitos adversos , Zumbido/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Estimulação Acústica/efeitos adversos , Animais , Vias Auditivas/metabolismo , Vias Auditivas/patologia , Feminino , Neurônios GABAérgicos/química , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Cobaias , Hipocampo/patologia , Masculino , Sinapses/química , Sinapses/metabolismo , Zumbido/patologia , Proteínas Vesiculares de Transporte de Glutamato/análise , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/análise
3.
Curr Top Behav Neurosci ; 51: 295-323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33083999

RESUMO

Tinnitus, or the phantom perception of sound, arises from pathological neural activity. Neurophysiological research has shown increased spontaneous firing rates and synchronization along the auditory pathway correlate strongly with behavioral measures of tinnitus. Auditory neurons are plastic, enabling external stimuli to be utilized to elicit long-term changes to spontaneous firing and synchrony. Pathological plasticity can thus be reversed using bimodal auditory plus nonauditory stimulation to reduce tinnitus. This chapter discusses preclinical and clinical evidence for efficacy of bimodal stimulation treatments of tinnitus, with highlights on sham-controlled, double-blinded clinical trials. The results from these studies have shown some efficacy in reducing the severity of tinnitus, based on subjective and objective outcome measures including tinnitus questionnaires and psychophysical tinnitus measurements. While results of some studies have been positive, the degree of benefit and the populations that respond to treatment vary across the studies. Directions and implications of future studies are discussed.


Assuntos
Zumbido , Estimulação Acústica , Estimulação Elétrica , Humanos , Neurônios , Projetos de Pesquisa , Zumbido/terapia
4.
Sci Rep ; 10(1): 20594, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244141

RESUMO

Psychophysical studies characterize hyperacusis as increased loudness growth over a wide-frequency range, decreased tolerance to loud sounds and reduced behavioral reaction time latencies to high-intensity sounds. While commonly associated with hearing loss, hyperacusis can also occur without hearing loss, implicating the central nervous system in the generation of hyperacusis. Previous studies suggest that ventral cochlear nucleus bushy cells may be putative neural contributors to hyperacusis. Compared to other ventral cochlear nucleus output neurons, bushy cells show high firing rates as well as lower and less variable first-spike latencies at suprathreshold intensities. Following cochlear damage, bushy cells show increased spontaneous firing rates across a wide-frequency range, suggesting that they might also show increased sound-evoked responses and reduced latencies to higher-intensity sounds. However, no studies have examined bushy cells in relationship to hyperacusis. Herein, we test the hypothesis that bushy cells may contribute to the neural basis of hyperacusis by employing noise-overexposure and single-unit electrophysiology. We find that bushy cells exhibit hyperacusis-like neural firing patterns, which are comprised of enhanced sound-driven firing rates, reduced first-spike latencies and wideband increases in excitability.


Assuntos
Núcleo Coclear/patologia , Hiperacusia/patologia , Animais , Nervo Coclear/patologia , Núcleo Coclear/citologia , Potenciais Evocados Auditivos , Feminino , Cobaias , Hiperacusia/etiologia , Percepção Sonora , Ruído/efeitos adversos , Zumbido/etiologia , Zumbido/patologia
5.
Hippocampus ; 29(8): 669-682, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30471164

RESUMO

Here, we investigate remodeling of hippocampal cholinergic inputs after noise exposure and determine the relevance of these changes to tinnitus. To assess the effects of noise exposure on the hippocampus, guinea pigs were exposed to unilateral noise for 2 hr and 2 weeks later, immunohistochemistry was performed on hippocampal sections to examine vesicular acetylcholine transporter (VAChT) expression. To evaluate whether the changes in VAChT were relevant to tinnitus, another group of animals was exposed to the same noise band twice to induce tinnitus, which was assessed using gap-prepulse Inhibition of the acoustic startle (GPIAS) 12 weeks after the first noise exposure, followed by immunohistochemistry. Acoustic Brainstem Response (ABR) thresholds were elevated immediately after noise exposure for all experimental animals but returned to baseline levels several days after noise exposure. ABR wave I amplitude-intensity functions did not show any changes after 2 or 12 weeks of recovery compared to baseline levels. In animals assessed 2-weeks following noise-exposure, hippocampal VAChT puncta density decreased on both sides of the brain by 20-60% in exposed animals. By 12 weeks following the initial noise exposure, changes in VAChT puncta density largely recovered to baseline levels in exposed animals that did not develop tinnitus, but remained diminished in animals that developed tinnitus. These tinnitus-specific changes were particularly prominent in hippocampal synapse-rich layers of the dentate gyrus and areas CA3 and CA1, and VAChT density in these regions negatively correlated with tinnitus severity. The robust changes in VAChT labeling in the hippocampus 2 weeks after noise exposure suggest involvement of this circuitry in auditory processing. After chronic tinnitus induction, tinnitus-specific changes occurred in synapse-rich layers of the hippocampus, suggesting that synaptic processing in the hippocampus may play an important role in the pathophysiology of tinnitus.


Assuntos
Neurônios Colinérgicos/fisiologia , Hipocampo/fisiopatologia , Zumbido/fisiopatologia , Estimulação Acústica , Animais , Modelos Animais de Doenças , Cobaias , Hipocampo/metabolismo , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Ruído , Reflexo de Sobressalto/fisiologia , Zumbido/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
6.
Neuroscience ; 407: 170-181, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30217755

RESUMO

Following noise overexposure and tinnitus-induction, fusiform cells of the dorsal cochlear nucleus (DCN) show increased spontaneous firing rates (SFR), increased spontaneous synchrony and altered stimulus-timing-dependent plasticity (StDP), which correlate with behavioral measures of tinnitus. Sodium salicylate, the active ingredient in aspirin, which is commonly used to induce tinnitus, increases SFR and activates NMDA receptors in the ascending auditory pathway. NMDA receptor activation is required for StDP in many brain regions, including the DCN. Blocking NMDA receptors can alter StDP timing rules and decrease synchrony in DCN fusiform cells. Thus, systemic activation of NMDA receptors with sodium salicylate should elicit pathological changes to StDP, thereby increasing SFR and synchrony and induce tinnitus. Herein, we examined the action of salicylate in tinnitus generation in guinea pigs in vivo by measuring tinnitus using two behavioral measures and recording single-unit responses from DCN fusiform cells pre- and post-salicylate administration in the same animals. First, we show that animals administered salicylate show evidence of tinnitus using both behavioral paradigms, cross-validating the tests. Second, fusiform cells in animals with tinnitus showed increased SFR, synchrony and altered StDP timing rules, like animals with noise-induced tinnitus. These findings suggest that alterations to fusiform-cell plasticity are an essential component of tinnitus, regardless of induction technique.


Assuntos
Plasticidade Celular/fisiologia , Núcleo Coclear/fisiopatologia , Plasticidade Neuronal/fisiologia , Zumbido/fisiopatologia , Animais , Vias Auditivas/efeitos dos fármacos , Vias Auditivas/fisiologia , Plasticidade Celular/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Cobaias , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ruído , Salicilato de Sódio/farmacologia
7.
Sci Transl Med ; 10(422)2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298868

RESUMO

The dorsal cochlear nucleus is the first site of multisensory convergence in mammalian auditory pathways. Principal output neurons, the fusiform cells, integrate auditory nerve inputs from the cochlea with somatosensory inputs from the head and neck. In previous work, we developed a guinea pig model of tinnitus induced by noise exposure and showed that the fusiform cells in these animals exhibited increased spontaneous activity and cross-unit synchrony, which are physiological correlates of tinnitus. We delivered repeated bimodal auditory-somatosensory stimulation to the dorsal cochlear nucleus of guinea pigs with tinnitus, choosing a stimulus interval known to induce long-term depression (LTD). Twenty minutes per day of LTD-inducing bimodal (but not unimodal) stimulation reduced physiological and behavioral evidence of tinnitus in the guinea pigs after 25 days. Next, we applied the same bimodal treatment to 20 human subjects with tinnitus using a double-blinded, sham-controlled, crossover study. Twenty-eight days of LTD-inducing bimodal stimulation reduced tinnitus loudness and intrusiveness. Unimodal auditory stimulation did not deliver either benefit. Bimodal auditory-somatosensory stimulation that induces LTD in the dorsal cochlear nucleus may hold promise for suppressing chronic tinnitus, which reduces quality of life for millions of tinnitus sufferers worldwide.


Assuntos
Núcleo Coclear/patologia , Zumbido/terapia , Estimulação Acústica , Animais , Estudos Cross-Over , Método Duplo-Cego , Cobaias , Humanos , Plasticidade Neuronal/fisiologia , Qualidade de Vida , Suínos
8.
J Neurosci ; 36(6): 2068-73, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865628

RESUMO

Tinnitus, the perception of phantom sounds, is thought to arise from increased neural synchrony, which facilitates perceptual binding and creates salient sensory features in the absence of physical stimuli. In the auditory cortex, increased spontaneous cross-unit synchrony and single-unit bursting are de facto physiological correlates of tinnitus. However, it is unknown whether neurons in the dorsal cochlear nucleus (DCN), the putative tinnitus-induction site, exhibit increased synchrony. Using a temporary-threshold shift model and gap-prepulse inhibition of the acoustic startle to assess tinnitus, we recorded spontaneous activity from fusiform cells, the principle neurons of the DCN, in normal hearing, tinnitus, and non-tinnitus guinea pigs. Synchrony and bursting, as well as spontaneous firing rate (SFR), correlated with behavioral evidence of tinnitus, and increased synchrony and bursting were associated with SFR elevation. The presence of increased synchrony and bursting in DCN fusiform cells suggests that a neural code for phantom sounds emerges in this brainstem location and likely contributes to the formation of the tinnitus percept. SIGNIFICANCE STATEMENT: Tinnitus, a phantom auditory percept, is encoded by pathological changes in the neural synchrony code of perceptual processing. Increased cross-unit synchrony and bursting have been linked to tinnitus in several higher auditory stations but not in fusiform cells of the dorsal cochlear nucleus (DCN), key brainstem neurons in tinnitus generation. Here, we demonstrate increased synchrony and bursting of fusiform cell spontaneous firing, which correlate with frequency-specific behavioral measures of tinnitus. Thus, the neural representation of tinnitus emerges early in auditory processing and likely drives its pathophysiology in higher structures.


Assuntos
Núcleo Coclear/patologia , Zumbido/patologia , Algoritmos , Animais , Fenômenos Eletrofisiológicos , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Cobaias , Modelos Neurológicos , Ruído , Reflexo de Sobressalto
9.
Hear Res ; 334: 20-9, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26074307

RESUMO

Tinnitus, the phantom perception of sound, is physiologically characterized by an increase in spontaneous neural activity in the central auditory system. However, as tinnitus is often associated with hearing impairment, it is unclear how a decrease of afferent drive can result in central hyperactivity. In this review, we first assess methods for tinnitus induction and objective measures of the tinnitus percept in animal models. From animal studies, we discuss evidence that tinnitus originates in the cochlear nucleus (CN), and hypothesize mechanisms whereby hyperactivity may develop in the CN after peripheral auditory nerve damage. We elaborate how this process is likely mediated by plasticity of auditory-somatosensory integration in the CN: the circuitry in normal circumstances maintains a balance of auditory and somatosensory activities, and loss of auditory inputs alters the balance of auditory somatosensory integration in a stimulus timing dependent manner, which propels the circuit towards hyperactivity. Understanding the mechanisms underlying tinnitus generation is essential for its prevention and treatment. This article is part of a Special Issue entitled .


Assuntos
Zumbido/fisiopatologia , Estimulação Acústica , Animais , Vias Auditivas/fisiopatologia , Percepção Auditiva/fisiologia , Limiar Auditivo/fisiologia , Núcleo Coclear/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Humanos , Colículos Inferiores/fisiopatologia , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/fisiopatologia
10.
Front Syst Neurosci ; 9: 116, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26321928

RESUMO

The cochlear nucleus (CN) is the first site of multisensory integration in the ascending auditory pathway. The principal output neurons of the dorsal cochlear nucleus (DCN), fusiform cells, receive somatosensory information relayed by the CN granule cells from the trigeminal and dorsal column pathways. Integration of somatosensory and auditory inputs results in long-term enhancement or suppression in a stimulus-timing-dependent manner. Here, we demonstrate that stimulus-timing-dependent plasticity (STDP) can be induced in DCN fusiform cells using paired auditory and transcutaneous electrical stimulation of the face and neck to activate trigeminal and dorsal column pathways to the CN, respectively. Long-lasting changes in fusiform cell firing rates persisted for up to 2 h after this bimodal stimulation, and followed Hebbian or anti-Hebbian rules, depending on tone duration, but not somatosensory stimulation location: 50 ms paired tones evoked predominantly Hebbian, while 10 ms paired tones evoked predominantly anti-Hebbian plasticity. The tone-duration-dependent STDP was strongly correlated with first inter-spike intervals, implicating intrinsic cellular properties as determinants of STDP. This study demonstrates that transcutaneous stimulation with precise auditory-somatosensory timing parameters can non-invasively induce fusiform cell long-term modulation, which could be harnessed in the future to moderate tinnitus-related hyperactivity in DCN.

11.
Cell Tissue Res ; 361(1): 233-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25526698

RESUMO

Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders.


Assuntos
Córtex Somatossensorial/metabolismo , Vias Auditivas , Percepção Auditiva , Córtex Somatossensorial/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...